



**Course:** Reaction Engineering and Control Lab. 0905564 (1 Cr. – Core Course)

**Catalogue Data:** Perform experiments related to courses (0905482) and (0905421) including batch, continuous, and plug flow reactors, measurement of residence time distributions, experimental measurement and control of flow, temperature, pressure, level and pH variables. Dynamic simulation of open & closed loop processes using available software packages.

**Prerequisites by  
Course:** 0905482, 0905421

|                                |                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Prerequisites by topic:</b> | Students should have a good background on the following topics: <ul style="list-style-type: none"><li>• Theory of chemical engineering reaction kinetics</li><li>• CSTR, PFR &amp; Batch reactors</li><li>• Process dynamics and process reaction curve</li><li>• Closed loop response with different types of controllers</li><li>• Empirical methods for tuning feedback controllers</li></ul> |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

**References:** See the experiments' manual and the references therein.

**Schedule & Duration:** 10 – 12 Weeks, 3 hours lab sessions

## **Minimum Student Material:** Lab sheets

**Minimum College Facilities:** Chemical Engineering Reaction & Control laboratories with process simulation software

|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Course Objectives:</b><br>hydraulic | <ol style="list-style-type: none"><li>1. Determination of reaction kinetics using batch, tubular &amp; CST reactors experiments</li><li>2. Development of the reaction kinetics for irreversible, reversible &amp; parallel reactions using analogue</li><li>3. Perform a steady state MB on a CSTR and plug flow reactor</li><li>4. Study the static and dynamic characteristics of various temperature measuring devices</li><li>5. Perform empirical modelling of the concentration dynamics in a CSTR reactor using the step-response method</li><li>6. Study the control elements of a closed loop level process and the effects of PID-controller parameters on the process response under set point and disturbance changes</li><li>7. Study the open loop response of higher order processes and the stability regions of P-, PI- and PID controllers of first order process using SIMULINK modules</li></ol> |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### **Course Outcomes (Related to ABET A2K):**

Upon successful completion of this course, the students should be able to:

1. Analyse measured experimental data obtained from batch, tubular and CST reactor experiments to determine reaction kinetics (**O6**)
2. Understand the similarity between hydraulic driving force for flow systems and the reactant concentration driving force in reacting systems (**O1**)
3. Estimate the time constant, steady state gain, connection of thermocouples and hysteresis of temperature measuring devices
4. Understand the closed loop dynamics of level process (interacting tanks) and tuning of PI controller (**O2**)
5. Model the Continuous stirred tank concentration dynamics using the FOPD model (**O1**)
6. Use SIMULINK environment to understand the behaviour of higher order system dynamics and determine the stability region of PID controller for a FOPD Process (**O2**)
7. To work effectively in team and take initiatives. (**O5**)

**Course Topics:**

| Experiment | Description                                                                                                            | Week |
|------------|------------------------------------------------------------------------------------------------------------------------|------|
| E. 1       | Determination of ethylacetate saponification reaction kinetics in a CSTR                                               | 1    |
| E. 2       | Determination of ethylacetate saponification reaction kinetics in a batch reactor                                      | 2, 3 |
| E. 3       | Steady state performance of a PFR                                                                                      | 4    |
| E. 4       | Hydraulic analogue                                                                                                     | 5    |
| E.5        | Empirical modelling of concentration dynamics in a CSTR                                                                | 6    |
| E.6        | Static and dynamic characteristics of selected temperature measuring devices                                           | 7    |
| E. 7       | Control of a level process (two interaction tanks) using P & PI controller                                             | 8    |
| E. 8       | Simulation of open and closed loop processes & determination of PID controller stability region using SIMULINK modules | 9    |
| E.9        | Process Control (Level, temperature, pressure, flow rate Control)                                                      | 10   |

**Computer Usage:** Use of SIMULINK software**Attendance:** Lab attendance is mandatory where the UJ policy on absence is applicable.**Assessments:** Exams and assignments.**Grading policy:**

|                   |             |
|-------------------|-------------|
| Lab evaluation    | 10 %        |
| Reports           | 30 %        |
| Midterm Exam      | 20 %        |
| <u>Final Exam</u> | <u>40 %</u> |
| Total             | 100%        |

**Instructor:**

| Instructor Name        | Office    | Ext.  | E-mail                                                                                                                           |
|------------------------|-----------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| Prof. Menwer Attarakih | CHE Dept. | 22887 | <a href="mailto:attarakih@yahoo.com">attarakih@yahoo.com</a><br><a href="mailto:m.attarakih@ju.edu.jo">m.attarakih@ju.edu.jo</a> |

**Last Updated:** 23. Sep, 2025.**References:** See the Experimental sheets